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Abstract. In this work, edge sets are mapped one to the other by representing these zero measure

sets as diffuse images which have positive measure supports that can be registered elastically. The

driving application for this work is to map a Purkinje fiber network in the epicardium of one heart

to the epicardium of another heart. The approach is to register sufficiently accurate diffuse surface

representations of two epicardia and then to apply the resulting transformation to the points of the

Purkinje fiber network. To create a diffuse image from a given edge set, a region growing method is

used to approximate diffusion of brightness from an edge set to a given point. To be minimized is

the sum of squared differences of the registered diffuse images along with an elastic penalty for the

registration. A Newton iteration is employed to solve the optimality system, and the degree of diffusion

is larger in initial iterations while smaller in later iterations so that a desired local minimum is selected

by means of vanishing diffusion. Global existence of minimizers is proved for each fixed degree of

diffusion. Furthermore, convergence of global minimizers as diffusion decreases is proved. Nevertheless,

it is demonstrated that the local minimizer introduced by vanishing diffusion is preferable to the trivial

global minimizer corresponding to the absence of diffusion. Favorable results are shown for registering

highly detailed rabbit heart models.
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1. Introduction

The heart is an electrically controlled mechanical pump. It’s main function is to drive blood

through the circulatory system, thus providing oxygen and metabolites to the organs. A well

coordinated electrical activation sequence is of vital importance for allowing an energy-efficient

mechanical contraction. In the ventricles, the main pumping chambers of the heart, the electrical

impulse is conducted first via the specialized conduction system, referred to as the Purkinje sys-

tem (PS). The PS is a highly ramified network of thin cable-like 1D structures which synchronizes

ventricular activation by quickly distributing the electrical impulse to the endocardium, i.e., the

surfaces of the ventricular cavities. The PS consists of two components, the endocardial PS which

lines the ventricular endocardium, and the free running PS which traverses the cavities. The

PS is electrically isolated from the ventricles except at discrete endpoints (Purkinje-myocardial

junctions) [33]. Transmission of the electrical signals at these discrete junctional sites, referred

to as Purkinje ventricular junctions (PVJ) is essential to excite the ventricular mass [20].

Under pathological conditions cardiac arrhythmias, i.e., disturbances of the healthy activation

sequence, may arise which may even degenerate into highly irregular activation patterns, referred

to as fibrillation. This loss of electrical synchronicity entails an impairment of the heart’s ability

to pump blood, which, ultimately, may even lead to sudden cardiac death. Despite the vital

role of the PS in shaping the activation sequence under healthy conditions, it is assumed that

the PS may be implicated in the formation and maintenance of such arrhythmias, under various

conditions including shock-induced arrhythmogenesis, failure of defibrillation shocks [6, 12] and

arrhythmias induced by focal activation [8].

Surprisingly, in most studies, both experimental as well as computational, PS effects are quite

often neglected. Despite recent advances, PS activity at the organ level cannot be observed

directly with currently available experimental modalities. Indirect observations are possible

[15], but major advanced are hampered by the inability of current experimental techniques to

resolve, with sufficient accuracy, electrical behavior confined to the depth of the ventricles or in

the PS. Computer models quite naturally suggest themselves as a surrogate technique to bridge

the gap between experimental observations, typically recorded at the epicardial surface of the

heart, and electrical events occurring within the PS, at the ventricular epicardium or within the

depth of ventricular walls. Despite major recent advancements in modeling technology [29, 28],

integrating topologically realistic models of the PS with anatomically and functionally realistic

models of the ventricles remains challenging.

Owing to the physiological importance of the PS it is highly desirable to include the PS

in computational models. Hence, fast techniques to incorporate PS topologies with 3D finite

element grids of the ventricles are sought after. The purpose of the present work was to develop

a mathematical framework which enables the mapping of the endocardial PS between different

ventricular surface geometries. In the absence of experimental data, a literature-based PS [35],

constructed for the San Diego rabbit heart model [34], served as reference topology. A recent

anatomically highly realistic model of rabbit ventricles [5] served as a target for developing and

testing the mapping technique. Both models are shown in Figure 6.1.

The exact location of the PS (and especially the PVJ) with respect to the ventricular surface

geometry is crucial in modeling the role of PS effects in the excitation of the cardiac muscle.
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Hence it is not sufficient to just project a given reference PS into a heart model. The different

surface geometries of the modeled ventricles have to be taken into account as well. Thus we first

seek a geometric transformation to match a template heart model with a given reference model.

In the context of mathematical image processing this can be seen as a 3D registration problem.

Once the transformation is found it can be applied to map structures (like the PS) within the

template model onto the reference model. This approach guarantees that not only topological

features of the PS but also its relative position to the ventricle are preserved and projected onto

the reference heart.

The heart models considered here are 3D finite element grids of very high complexity. Given

the sheer size of the models it would require a massive computational effort to calculate just

simple transformations. Hence we developed a method that is capable of computing even highly

non-linear transformations in a reasonable time while requiring only moderate computational

resources. We perform a dimensional reduction of the problem by treating the 3D models as 2D

image sequences. This strategy reduces memory consumption considerably while simultaneously

allowing us to use very efficient techniques to solve the resulting 2D registration problems.

2. Edges as Binary Images

We consider slices arising from cuts through (a) a realistic model of rabbit ventricles [5] and

(b) the San Diego rabbit heart [34]. Thus we have two-dimensional edge-sets Γ0 and Γ1 and

we assume that both edge-sets are closed and have finite Hausdorff-measure H1(Γi) < ∞ for

i = 0, 1. Let Ω := [1, N ]2 ⊂ R
2 with N ∈ N and let I0 and I1 be the characteristic functions

of Γ0 and Γ1 respectively. Then I0 and I1 can be interpreted as binary images on Ω. The goal

now is to find a displacement w : R2 → R
2 such that I0(x+w(x)) ≈ I1(x) for all x ∈ Ω. For

the sake of brevity the argument of w is omitted in the following.

One approach to the computation of the desired displacement is to treat points on Γ0 as if

connected to one another by elastic springs which are perturbed minimally to meet the target

set Γ1. However, because of the potentially very high computational complexity of such a

formulation, the approach used here to match the edge sets is to embed them into images

which are then registered elastically. Elastic potential energy has been used by many authors

to regularize image registration; see, e.g., [27], [21] and particularly the review in [23]. Such

regularization is particularly natural when used to register images of tissues having undergone

relatively small displacements. However, in the present context, the required displacement field

is highly nonlinear, owing partly to the complex geometry of the heart and partly to the great

difference in regularity of the two given edge sets. Nevertheless elastic registration is employed

here, but with considerable precautions.

In addition to regularization, a notion of image similarity must be selected for the image

registration problem at hand. Assuming that {Ii}i=0,1 ⊂ L2(Ω) one of the simplest distance

measures (see for instance [18]) is the sum of squared intensity differences (SSID) which in this

case is given by

(2.1)
1

2

ˆ

Ω
|I0(x+w)− I1(x)|2 dx.
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However, in this form the approach is not feasible for the problem: both Γ0 and Γ1 are sets of

measure zero in Ω and supp(Ii) = Γi for i = 0, 1. Hence the trivial deformation w ≡ 0 minimizes

the SSID measure

(2.2)
1

2

ˆ

Ω
|I0(x)− I1(x)|2 dx =

1

2

ˆ

Γ0∪Γ1

|I0(x)− I1(x)|2 dx = 0.

Since we are dealing with edge-sets another perhaps more natural approach to measure difference

is employing the Hausdorff-distance

(2.3) dH(Γ0,Γ1) := max

(

sup
x∈Γ0

dΓ1
(x), sup

x∈Γ1

dΓ0
(x)

)

,

where

dΓi
(x) := inf

y∈Γi

|x− y|2 , i = 0, 1,

and |·|2 denotes the standard Euclidean norm in R
2. The Hausdorff-distance is a popular tool in

computer graphics and image processing it is and mainly used for shape recognition problems.

For instance, Knauer et al. [22] developed a method for minimizing the Hausdorff-distance

under translations and rigid motions to determine a registration in the context of neurosurgical

operations. Though their proposed algorithm is efficient, it is limited to rigid transformations.

Fuchs et al. [19] introduced an elastic deformation distance in a shape space; however, calculating

the shortest path between shapes proved to be computationally expensive. Droske and Ring

[16] developed a regularized shape gradient descent algorithm within a level-set framework for

simultaneous registration and segmentation. However, due to (2.2) for instance, the present

problem still lacks sufficient structure to be treated directly by such approaches.

We present here a technique that combines the simplicity of the SSID-measure (2.1) with the

accuracy of the Hausdorff-distance (2.3). Instead of looking at I0 and I1 directly, we consider

approximations of edge-sets by diffuse regions in images. Note that this strategy is also employed

by Ambrosio and Tortorelli [2] in their approximation of the Mumford-Shah functional [24]. Here,

for ε > 0 define Iε
i for i = 0, 1 by

(2.4) Iε
i (x) :=







1− dΓi
(x)/ε, if dΓi

(x) ≤ ε,

0, otherwise.

The nonzero regions of Iε
i are diffuse extensions of the edges Γi. Since the distance function

dΓi
(x) can be expensive to compute, Iε

i is calculated in practice by a marching procedure in

which the distance dΓi
(x) is approximated in terms of the number of marching steps from the

edge set Γi to x. The extent of this ”region-growing” depends on the magnitude of ε: the effect

looks like a silk painting of Γi where ε affects the duration of the brush touching the fabric.

From an image processing point of view this technique can be seen as a distance transform. (A

comprehensive review on the use of distance transforms in digital image processing is given in

[32].) Now we may use (2.1) on the region-grown versions Iε
i of Ii to obtain an adapted distance
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measure

(2.5) Sε(w) :=
1

2

ˆ

Ω
|Iε

0(x+w)− Iε
1(x)|2 dx.

As indicated above, we assume that w is an elastic deformation; thus, we define the following

linear elastic potential (see for instance [23, Chap. 9])

(2.6) E(w) :=
λ

2

ˆ

Ω
(∇ ·w)2 dx+

µ

4

ˆ

Ω

∣

∣

∣∇w⊤ +∇w

∣

∣

∣

2

F
dx,

where |·|F denotes the Frobenius-norm and µ and λ are positive constants describing the elas-

tic properties of the body, the so-called Navier–Lamé constants. Additively extending Sε by

soft constraints, namely the linear elastic potential E, ensures that among all solutions elastic

deformations are favored. Hence we end up with the following cost functional

Jε(w) :=Sε(w) + E(w)

=
1

2
‖Iε

0(x+w)− Iε
1(x)‖2L2(Ω) +

λ

2
‖∇ ·w‖2L2(Ω) +

µ

4

∥

∥

∥∇w⊤ +∇w

∥

∥

∥

2

L2(Ω)
,

for a fixed ε > 0. Assuming that w ∈ H1(Ω) the cost Jε is well defined. Summarized we

compute a registration by solving the following minimization problem

(2.7) min
w∈H1(Ω)

Jε(w).

Note that the images Iε
i vary with the value of ε. Hence for each ε, (2.7) forms a stand-alone

minimization problem. A rigorous proof of existence of a solution to (2.7) for ε fixed is given in

the appendix. For a better understanding of the behavior of the minimization problem (2.7) as

ε → 0, consider the following remark. (A further investigation is presented in the appendix.)

Remark 1. Note that there is a close relation between the Navier–Lamé constants λ, µ and

ε. As indicated above for ε = 0, i.e., Iε
i = Ii, a solution to the registration problem (2.7) is

w = 0. However, it should be mentioned that for small values of ε (”small” compared to the

Navier–Lamé constants) Jε is minimized by w = 0 as well. To clarify this, consider a simplified

1D-example.

Let Ω := (0, 1) ⊂ R and consider the ”binary images” I0 and I1 defined by

I0(x) :=







1, x = 1
4 ,

0, otherwise,
I1(x) :=







1, x = 1
2 ,

0, otherwise.

We want to register I0 and I1, i.e., we want to find a deformation w such that I0(x + w(x)) ≈
I1(x). Hence we introduce the following cost functional

J(w) :=

ˆ 1

0
|I0 (x+ w(x))− I1(x)|2 dx+ µ

ˆ 1

0

∣

∣w′(x)
∣

∣

2
dx

=S(I0, I1;w) + P(w),

with a regularization parameter µ > 0. Since supp(Ii) consists only of discrete points we
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obviously have (similar to the 2D case) S(I0, I1; 0) = 0. Hence we introduce the ”blurred”

approximations

Iε
0(x) :=







1, 1
4 ≤ x ≤ 1

4 + ε,

0, otherwise,
Iε
1(x) :=







1, 1
2 ≤ x ≤ 1

2 + 2ε,

0, otherwise,
0 < ε ≤ 1

4
,

i.e., the ”images” Iε
i are step functions, see Fig. 2.1 (a) for a sketch. Thus we modify the cost J

by defining

Jε(w) := S(Iε
0 ,Iε

1 ;w) + P(w).

With a view to Fig. 2.1 (a) we look for deformations of the form

wε(x) := bx,

with some scalar b ∈ R
+ and 0 < ε ≤ 1

4 fixed. The ”optimal” deformation (from an image

processing point of view) is obviously given by

w⋆
ε(x) := x,

i.e., b⋆ = 1. Due to the simple structure of the problem we are able to compute S(Iε
0 ,Iε

1 ;wε)

explicitly. We have to consider four cases depending on the magnitude of b (compare Fig. 2.1 (a)):

(1 + b)(14 + ε) ≤ 1
2 , i.e., the right ”edge” of Iε

0 is not shifted further than to the left ”edge” of Iε
1 .

Then we obtain

S(Iε
0 ,Iε

1 ;wε) = (1 + b)

((

1

4
+ ε

)

− 1

4

)

+

(

1

2
+ 2ε− 1

2

)

= (b+ 3)ε.

1
2 ≤ (1 + b)(14 + ε) ≤ 1

2 + 2ε, i.e., the right edge of Iε
0 is shifted into the interior of Iε

1 . We

compute

S(Iε
0 ,Iε

1 ;wε) =

(

1

2
− (1 + b)

1

4

)

+

(

1

2
+ 2ε− (1 + b)

(

1

4
+ ε

))

=
1

2
(1− b)(1 + 2ε).

1
4(1 + b) ≤ 1

2 + 2ε ≤ (1 + b)(14 + ε), i.e., the shifted edges of Iε
0 are left (left edge) and right

(right edge) of the right edge of Iε
1 . Hence we get

S(Iε
0 ,Iε

1 ;wε) =

(

1

4
(1 + b)− 1

2

)

+

(

(1 + b)

(

1

4
+ ε

)

− 1

2
− 2ε

)

=
1

2
(b− 1)(1 + 2ε).

1
2 +2ε ≤ 1

4(1+ b) ≤ 1, i.e., the left edge of Iε
0 is shifted to the right of the right edge of Iε

1 . This

yields

S(Iε
0 ,Iε

1 ;wε) =

(

1

2
+ 2ε− 1

2

)

+ (1 + b)ε = (b+ 3)ε.

The penalizer P for wε = bx is given by

P(wε) = µ

ˆ 1

0
|b|2 dx = µb2.
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(a) (b)

Figure 2.1: (a) Sketch of the simplified 1D-example discussed in Remark 1. (b) Graph of G(ε, b)
on [0, 14 ]× [0, 2] for µ = 1

4 .

Now consider the case b = 0, i.e., wε = 0, then we have P(0) = 0 and the similarity measure is

given by (the first case applies)

S(Iε
0 ,Iε

1 ; 0) = 3ε.

On the other hand for the heuristic ”optimal” deformation w⋆
ε(x) := x with b⋆ = 1 we have

S(Iε
0 ,Iε

1 ;w
⋆
ε) = 0 and P(w⋆

ε) = µ. With 0 < ε < min(14 ,
µ
3 ) the previous considerations imply

Jε(0) = S(Iε
0 ,Iε

1 ; 0) = 3ε < 3 · µ
3
= P(w⋆

ε) + S(Iε
0 ,Iε

1 ;w
⋆
ε) = Jε(w⋆

ε).

We see that if ε becomes ”too small” compared to the regularization parameter µ, the trivial

deformation w ≡ 0 minimizes the cost Jε. To illustrate this phenomenon Fig. 1 (b) shows the

graph of G(ε, b) := Jε(bx) for ε ∈ [0, 14 ], b ∈ [0, 2] and µ = 1
4 . Obviously the global minimizer

of Jε is b = 0 (and hence w = 0) for small values of ε but b = 1 for sufficiently large ε. Note

that this behavior is not a specialty of the one dimensional case as it can be observed in 2D as

well. Therefore we developed an iterative solution strategy. We compute an initial deformation

for a ”large” ε. This rough solution is used as initial guess to solve the registration problem

for a smaller value of ε. We repeat this process to iteratively refine the transformation by

simultaneously avoiding that the computed transformations get close to zero as ε → 0 (details

are given in Sec. 5.2). Although this means that we only compute local minima of the cost (as

ε gets smaller) the example given above shows that global minima are not necessarily better

suited to obtain a good registration.

3. Optimality Conditions

To obtain the optimality conditions for the optimization problem (2.7) we compute the varia-

tional derivative of Jε in an arbitrary direction v ∈ C∞(Ω̄)

δJε

δw
(w;v) :=

d

ds
Jε(w + sv)

∣

∣

∣

∣

s=0

.
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To keep things clear we employ the linearity of the Gâteaux derivative and split the computation

into two parts
δJε

δw
(w;v) =

δSε

δw
(w;v) +

δE

δw
(w;v).

Starting with Sε we get

δSε

δw
(w;v) =

ˆ

Ω
(Iε

0(x+w)− Iε
1(x))∇Iε

0(x+w) · v dx,

where here ∇ denotes the distributional derivative of Iε
0 . Next we write E(w) in a more explicit

form by using
∣

∣

∣∇w⊤ +∇w

∣

∣

∣

2

F
=

2
∑

j,ℓ=1

(

∂

∂xj
wℓ +

∂

∂xℓ
wj

)2

,

where w(x) := (w1(x), w2(x))
⊤and compute with v(x) := (v1(x), v2(x))

⊤ and x := (x1, x2)
⊤

δE

δw
(w;v) =

d

ds

ˆ

Ω

µ

4

2
∑

j,ℓ=1

(

∂xj
(wℓ + svℓ) + ∂xℓ

(wj + svj)
)2

dx

∣

∣

∣

∣

∣

∣

s=0

+
d

ds

ˆ

Ω

λ

2
(∇ · (w + sv))2 dx

∣

∣

∣

∣

s=0

=

ˆ

Ω

µ

2

2
∑

j,ℓ=1

(∂xj
wℓ + ∂xℓ

wj)(∂xj
vℓ + ∂xℓ

vj) dx

∣

∣

∣

∣

∣

∣

s=0

+
λ

2

d

ds

ˆ

Ω
(∇ ·w)2 + 2s (∇ ·w) (∇ · v) + s2 (∇ · v)2 dx

∣

∣

∣

∣

s=0

=

ˆ

Ω
µ

2
∑

ℓ=1

(∇wℓ + ∂xℓ
w) · ∇vℓ + λ (∇ ·w) (∇ · v) dx.(3.1)

The weak necessary condition for the minimization of Jε is

δJε

δw
(w;v) =

δSε

δw
(w;v) +

δE

δw
(w;v) = 0, ∀v ∈ C∞(Ω̄).

To obtain a strong optimality formulation, we assume first that w is sufficiently regular. For

employing the fundamental Lemma of calculus of variations we have to shift the derivatives from

v to w; thus, by using partial integration we obtain

δE

δw
(w;v) =µ

ˆ

∂Ω

2
∑

ℓ=1

vℓ (∇wℓ + ∂xℓ
w) · n dS − µ

ˆ

Ω
(∆w +∇ (∇ ·w)) · v dx

+ λ

ˆ

∂Ω
(∇ ·w) (v · n) dS − λ

ˆ

Ω
v · ∇ (∇ ·w) dx.

where n denotes the outer unit normal vector on ∂Ω. The boundary conditions result from

letting v be concentrated on ∂Ω which implies

(3.2) λnℓ∇ ·w + µ (∇wℓ + ∂xℓ
w) · n = 0, on ∂Ω.
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Hence by setting the variational derivative of Jε to zero we obtain

0 =
δJε

δw
(w;v) =− µ

ˆ

Ω
(∆w +∇ (∇ ·w)) · v dx− λ

ˆ

Ω
v · ∇ (∇ ·w) dx

+

ˆ

Ω
(Iε

0(x+w)− Iε
1(x))∇Iε

0(x+w) · v dx

+ µ

ˆ

∂Ω

2
∑

ℓ=1

vℓ (∇wℓ + ∂xℓ
w) · n dS + λ

ˆ

∂Ω
(∇ ·w) (v · n) dS;

(3.3)

Since this holds for any variation v ∈ C∞(Ω̄) we may apply the fundamental Lemma of calculus

of variations to obtain the Euler–Lagrange equations of the minimization problem (2.7)

(3.4)

{

(µ∆w + (µ+ λ)∇ (∇ ·w)) =(Iε
0(x+w)− Iε

1(x))∇Iε
0(x+w), in Ω,

λnℓ∇ ·w + µ (∇wℓ + ∂xℓ
w) · n =0, on ∂Ω.

We define an operator E by

(3.5) Ew := µ∆w + (µ+ λ)∇ (∇ ·w) ,

which is the so-called elasticity operator. It gives the inner stress of a given material (deter-

mined by the Navier–Lamé constants) under the deformation w (see for instance [23, Chap. 9]).

Similarly, we set

(3.6) f(x,w;Iε
0 ,Iε

1) := (Iε
0(x+w)− Iε

1(x))∇Iε
0(x+w),

which is the driving force of the registration. Thus the Euler–Lagrange equations (3.4) become

(3.7) Ew = f(x,w;Iε
0 ,Iε

1).

Note that the driving force of the registration is the Gâteaux derivative of the employed distance

measure. This gives rise to some important observations. If the force field f is small, a slight

deformation w is enough to satisfy (3.7). In the special case of edge-sets that means that the

applied distance measure has to be sensitive enough to ”capture” differences in the pathway of

the edges Γi. Here it becomes obvious again that a naive application of the SSID-measure on

the original binary images Ii is not feasible for our problem. The driving force generated by

f(x,w; I0, I1) is too small to yield a sufficiently large deformation w such that the shape of Γ0

changes visibly.

However, at the same time the applied distance measure has to be robust so that it is able

to ”ignore” minor differences in the details of the edges Γi in the presence of noise. Though the

Hausdorff–distance generates a sufficiently large driving force for an elastic registration it is very

sensitive to noise. Only modifications of the Hausdorff–distance-measure (2.3) are capable of

matching noisy image data. (see for instance [30] or [36]. )

The technique of ”region-growing” proposed here is able to satisfy both requirements. Depend-

ing on the choice of ε > 0 the broadening of the blurred edges Γ̃ε
i := supp(Iε

i ) for i = 0, 1 can

be arbitrarily extended; thus provoking a large driving force f(x,w;Iε
0 ,Iε

1) if the original edges
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Γi differ significantly. On the other hand the blurring effect or our ”region-growing” approach

automatically smooths noisy edges by simultaneously preserving characteristic features. How-

ever, an inadequate choice of ε can lead to either excessive blurring and hence loss of important

features or insufficient enhancement of the edges and thus a too small driving force f . Though

the value of ε is therefore critical, the process of finding a suitable ε is usually not too difficult.

Nevertheless, in the following we present a solution strategy which is robust against the choice

of ε.

4. Solution Strategy

Since the Euler–Lagrange equations (3.4) are a system of nonlinear partial differential equations

(PDEs) in w we employ Newton’s method on the functional Jε which takes the form

(4.1)











δ2Jε

δw2
(wk;v, δwk) =− δJε

δw
(wk;v), ∀v ∈ C∞(Ω̄),

wk+1 =wk + τδwk,

k = 1, 2, . . . ,

where τ > 0 denotes a given step-size and k is the iteration index. By employing again the

linearity of the of the Gâteaux derivative we first compute

δ2Sε

δw2
(wk;v, δwk) =

ˆ

Ω
v∇Iε

0(x+wk)∇Iε
0(x+wk)

⊤δwk dx.

By using the first variational derivative (3.1) of the linear elastic potential we obtain further

δ2E

δw2
(wk;v, δwk) =

d

ds

ˆ

Ω
µ

2
∑

j=1

(

∇(wkj + sδwkj ) + ∂xj
(wk + sδwk)

)

· ∇vj dx

∣

∣

∣

∣

∣

∣

s=0

+
d

ds

ˆ

Ω
λ (∇ · (wk + sδwk)) (∇ · v) dx

∣

∣

∣

∣

s=0

=

ˆ

Ω
µ

2
∑

j=1

(

∇δwkj + ∂xj
δwk

)

· ∇vj + λ (∇ · δwk) (∇ · v) dx.

Hence, by using the force field f (3.6) we get the following weak form of the Newton step:

ˆ

Ω
µ

2
∑

j=1

(

∇δwkj + ∂xj
δwk

)

· ∇vj dx

+

ˆ

Ω
λ (∇ · δwk) (∇ · v) dx

+

ˆ

Ω
v∇Iε

0(x+wk)∇Iε
0(x+wk)

⊤δwk dx =−
ˆ

Ω
µ

2
∑

j=1

(

∇wkj + ∂xj
wk

)

· ∇vj dx

−
ˆ

Ω
λ (∇ ·wk) (∇ · v) dx

−
ˆ

Ω
f(x,wk;Iε

0 ,Iε
1) · v dx,

(4.2)
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for all v ∈ C∞(Ω̄). Using the operator E and again partial integration and the boundary

conditions (3.2) together with the fundamental Lemma of calculus of variations we arrive (under

stronger assumptions on the regularity of w) at the following strong formulation:

(4.3)







(

−E +∇Iε
0(x+wk)∇Iε

0(x+wk)
⊤
)

δwk =Ewk − f(x,wk;Iε
0 ,Iε

1)), in Ω,

λnℓ∇ ·wk + µ (∇wkℓ + ∂xℓ
wk) · n =0, on∂Ω.

which is a linear PDE-system for the unknown function δwk.

4.1. Solvability of the Newton Step

For the sake of brevity we drop the iteration index k for the moment and set u = δw. We

reconsider the weak formulation (4.2) of the Newton step and define the bilinear form

B(u,v) :=

ˆ

Ω
µ
(

∇u⊤ +∇u
)

:
(

∇v⊤ +∇v
)

+ λ (∇ · u) (∇ · v) dx

+

ˆ

Ω
u∇Iε

0(x+w)∇Iε
0(x+w)⊤v dx,

and the linear functional

F (v) :=−
ˆ

Ω
µ
(

∇w⊤ +∇w
)

:
(

∇v⊤ +∇v
)

+ λ (∇ ·w) (∇ · v) dx

−
ˆ

Ω
(Iε

0(x+w)− Iε
1(x))∇Iε

0(x+w) · v dx,

where : denotes a component-wise matrix scalar product. Then the variational formulation (4.2)

of the Newton step takes the form

(4.4) B(u,v) = F (v), ∀v ∈ C∞(Ω̄).

Now we show well-posedness of the variational problem (4.4).

Theorem 2. Let v ∈ C∞(Ω̄), Iε
0 ∈ W 1,∞(Ω), Iε

1 ∈ L∞(Ω) and λ, µ > 0.

If for given w ∈ H1(Ω)

(4.5)

ˆ

Ω
|∇Iε

0(x+w) · (a+Mx)|2 dx = 0 implies a+Mx = 0,

for every skew-symmetric matrix M ∈ R
N×N and every vector a ∈ R

N then there exists a

unique u ∈ H1(Ω) satisfying (4.4).

Proof. We will show that B(u,v) is bounded and coercive on H1(Ω) and that F (v) is bounded

on H1(Ω). Then due to the fact that C∞(Ω̄) is dense in H1(Ω) we may apply the Lax–Milgram
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Lemma [9] to prove the claim. We start by showing boundedness of B and F :

|B(u,v)| ≤4µ ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) + λ ‖∇u‖L2(Ω) ‖∇v‖L2(Ω)

+ ‖u‖L2(Ω) ‖Iε
0‖2W 1,∞(Ω) ‖v‖L2(Ω)

≤
(

4µ+ λ+ ‖Iε
0‖2W 1,∞(Ω)

)

‖u‖H1(Ω) ‖v‖H1(Ω) ,(4.6)

and analogously

|F (v)| ≤
(

‖Iε
0‖L∞(Ω) + ‖Iε

1‖L∞(Ω)

)

‖Iε
0‖W 1,∞(Ω) ‖v‖L2(Ω)

+ (4µ + λ) ‖w‖H1(Ω) ‖v‖H1(Ω) .

For showing coercivity of B we define the energy norm

‖u‖E := µ
∥

∥

∥
∇u⊤ +∇u

∥

∥

∥

2

L2(Ω)
+ λ ‖∇ · u‖2L2(Ω) ,

and obtain

(4.7) B(u,u) = ‖u‖E +

ˆ

Ω
|∇Iε

0(x+w) · u|2 dx ≥ ‖u‖E .

By using Korn’s inequality [31] we have

‖u‖2H1(Ω) ≤c1 ‖u‖2L2(Ω) +K
∥

∥

∥∇u⊤ +∇u

∥

∥

∥

2

L2(Ω)

≤c1 ‖u‖2L2(Ω) + c2 ‖u‖2E ,(4.8)

for some positive constants c1, K and c2 = K/µ. Now assume that there exists a sequence

{un}n≥1 ⊂ H1(Ω) such that

(4.9) ∀n ∈ N : ‖un‖H1(Ω) = 1, and B(un,un)
n→∞−→ 0,

which as a consequence of (4.7) immediately implies

(4.10) ‖un‖E
n→∞−→ 0.

Due to the compact embedding of H1(Ω) in L2(Ω) [1] there exists a subsequence {unk
}k≥1 ⊂

{un}n≥1 such that unk

k→∞−→
L2(Ω)

u⋆ ∈ L2(Ω). But (4.8) even implies

‖unk
− unl

‖2H1(Ω) ≤ c1 ‖unk
− unl

‖2L2(Ω) + c2 ‖unk
− unl

‖2E .

Since {unk
}k≥1 converges in L2(Ω) and due to (4.10) both terms on the right hand side vanish;

thus, {unk
}k≥1 is in fact a Cauchy–sequence in H1(Ω) and hence u⋆ ∈ H1(Ω). Further we

12



observe that due to (4.7) and (4.6)

‖u⋆‖2E ≤B(u⋆,u⋆) = B(u⋆ − unk
,u⋆) +B(unk

,u⋆ − unk
) +B(unk

,unk
)

≤c3 ‖u⋆ − unk
‖H1(Ω)

(

‖u⋆‖H1(Ω) + ‖unk
‖H1(Ω)

)

+ |B(unk
,unk

)| ,

where c3 := 4µ + λ+ ‖Iε
0‖2W 1,∞(Ω). Since {unk

}k≥1 is a converging sequence in H1(Ω) and due

to assumption (4.9) the right hand side tends to zero as k → ∞ which gives B(u⋆,u⋆) = 0. This

implies

0 =
(

∇u⋆⊤ +∇u⋆
)

i,j
=: e⋆i,j ,

and thus for each component function u⋆1 and u⋆2 of u⋆ we have [10]

∂xixj
u⋆k = ∂xi

e⋆j,k + ∂xj
e⋆k,i − ∂xk

e⋆i,j = 0,

which implies that u⋆ is a linear function of x. Hence we set u⋆ := a +Mx with a ∈ R
N and

M ∈ R
N×N . Since ∇u⋆⊤ +∇u⋆ = M⊤ +M = 0 the matrix M is skew-symmetric. Thus by

employing (4.7) we obtain

0 = B(u⋆,u⋆) ≥
ˆ

Ω
|∇Iε

0(x+w) · u⋆|2 dx =

ˆ

Ω
|∇Iε

0(x+w) · (a+Mx)|2 dx,

which according to the initial assumption (4.5) implies u⋆ = a +Mx = 0. On the other hand

according to (4.9) we have for all n ∈ N that ‖un‖H1(Ω) = 1 which is a contradiction. Hence

(4.9) is invalid and B is coercive on H1(Ω).

Based on the proof given above the convergence of Newton’s method (4.1) for a fixed ε > 0

and a suitable initial guess w1 can be showed using the Newton–Kantorovich Theorem (see for

instance [26] or [13]).

5. Numerical Approximation

We will first introduce a discretization scheme for the strong formulation (4.3) of the Newton

step and then explain the discrete realization of Newton’s method (4.1). We start by rewriting

the Euler-Lagrange equations (3.7). Let from now on u and v denote the component functions

of w, i.e., w(x) := (u(x), v(x))⊤, and let x = (x, y) ∈ Ω. Then we obtain for the elasticity

operator E

Ew =µ∆w + (µ+ λ)∇ (∇ ·w)

=µ

(

∂2w

∂x2
+

∂2w

∂y2

)

+ (µ+ λ)∇
(

∂u

∂x
+

∂v

∂y

)

=µ

(

∂2

∂x2u+ ∂2

∂y2u
∂2

∂x2 v +
∂2

∂y2
v

)

+ (µ+ λ)

(

∂2

∂x2u+ ∂2

∂x∂yv
∂2

∂x∂yu+ ∂2

∂x2 v

)

=

(

(λ+ 2µ) ∂2

∂x2 + µ ∂2

∂y2
(λ+ µ) ∂2

∂x∂y

(λ+ µ) ∂2

∂x∂y µ ∂2

∂x2 + (λ+ 2µ) ∂2

∂y2

)(

u

v

)

.
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We define the following operators which act on the component functions u and v of w

E11 :=(λ+ 2µ)
∂2

∂x2
+ µ

∂2

∂y2
,

E12 = E21 =(λ+ µ)
∂2

∂x∂y
,

E22 =µ
∂2

∂x2
+ (λ+ 2µ)

∂2

∂y2
,

and thus we can write

(5.1) Ew =

(

E11 E12
E21 E22

)(

u

v

)

.

Similarly we obtain the following expression for the force field f

f(x,w) :=

(

f1(x,w)

f2(x,w)

)

=

(

(Iε
0(x+w)− Iε

1(x))
∂
∂xIε

0(x+w)

(Iε
0(x+w)− Iε

1(x))
∂
∂yIε

0(x+w)

)

.

(5.2)

5.1. Discretization of the Newton Step

For the sake of simplicity we drop again the iteration index k in this subsection. Since we

are working with digital images we define a grid Ωh := {1, . . . , N}2, where N denotes the

resolution of the images. We use a unit step size h := 1, i.e., the width of a cell is one, and

employ standard central finite differences to discretize the Newton step (4.3). In particular let

j := (j1, . . . , jN ) ∈ R
N be an integer component multi index, 1 := (1, . . . , 1)⊤ ∈ R

N and the cell

centroids be given by xj := j, 1 ≤ j ≤ N · 1. We denote the array arising from evaluating e.g.

u at each grid point by u(Ωh) ∈ R
N×N . Hence Uj ≈ u(xj) and ~u ∈ R

N2

denotes the vector of

values {Uj} corresponding to the lexicographic ordering in which j1 increments first from 1 to

N , then j2 and so on. Further, let D(~u) ∈ R
N2×N2

be the diagonal matrix arising from situating

the values {Uj} along the diagonal according to lexicographic ordering.

We start by discretizing the elasticity operator E . We show for instance the discretization of

E11 near the lower left corner of Ωh

(5.3)

...
...







0 0 −2µ

0 8µ + 4λ −4µ− 4λ

0 0 −2µ













−2µ 0 −2µ

−4µ− 4λ 16µ+ 8λ −4µ− 4λ

−2µ 0 −2µ






· · ·







0 0 −2µ

0 2λ+ 4µ −2µ− 2λ

0 0 0













−2µ 0 −2µ

−2µ− 2λ 8µ + 4λ −2µ− 2λ

0 0 0






· · ·

The upper right block represents the stencil weights for neighbors of a field cell. Similarly the

other blocks show for boundary cells the stencil weights for their neighbors. With the same
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Figure 5.1: Sketch illustrating two dimensional bilinear interpolation.

format we represent the stencils of E12:

(5.4)

...
...







0 µ− λ −µ− λ

0 0 0

0 −µ− λ µ+ λ













µ+ λ 0 −µ− λ

0 0 0

−µ− λ 0 µ+ λ






· · ·







0 µ− λ −µ− λ

0 µ+ λ −µ+ λ

0 0 0













µ+ λ 0 −µ− λ

µ− λ 0 −µ− λ

0 0 0






· · ·

The stencils for E22 and E21 are constructed by adequate copying and mirroring of (5.3) and

(5.4) respectively. This gives rise to matrices Ek.ℓ ∈ R
N2×N2

with 1 ≤ k, ℓ ≤ 2 which form the

discrete version of the operator E under lexicographic ordering, i.e.,

E(u(Ωh), v(Ωh)) ≈
(

E11~u+E12~v

E21~u+E22~v

)

=

(

E11 E12

E21 E22

)(

~u

~v

)

,

which we abbreviate by setting

E :=

(

E11 E12

E21 E22

)

∈ R
2N2×2N2

and ~w :=

(

~u

~v

)

∈ R
2N2

,

so that we may write

E ~w =

(

E11 E12

E21 E22

)(

~u

~v

)

.

Now we develop the discretization of the images Iε
i and the gradient ∇Iε

0(x + w). Note that

for non-integer values of w a (multi)linear interpolation scheme has to be applied to compute

Iε
0(x +w) and ∇Iε

0(x +w). (This partially justifies the assumption on Iε
0 being a W 1,∞(Ω)-

function. ) Let p := xj + wj and the nodes of the cell enclosing p be denoted by a (lower left),

b (lower right), c (upper right) and d (upper left); a sketch is given in Figure 5.1. Then the
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value of Iε
0 at p can be computed by employing the following (bi)linear interpolation scheme

Iε
0(p) = Iε

0(xj + wj) ≈Iε
0(d)(1 − α1)(1 − α2) + Iε

0(a)α1(1− α2)

+ Iε
0(c)(1− α1)α2 + Iε

0(b)α1α2 =: Ĩ0,j ,
(5.5)

where αi := pi − di ∈ [0, 1] for i = 1, 2. If p lies outside of Ω we assign the extrapolation value

zero. Using this we introduce the matrix Ĩ0 ∈ R
N×N of values

{

Ĩ0,j
}

. The discrete version

Ĩ1 ∈ R
N×N of Iε

1 is readily established by setting Ĩ1,j := Iε
1(xj).

Finally we approximate the gradient ∇Iε
0 . Let δh denote a fraction of the cell width h, i.e.,

δh := h/2 = 1/2. Employing this we get the increment of Iε
0(xj+wj) in x-direction to compute

the following discrete derivative

∂

∂x
Iε
0(xj +wj) ≈

1

2δh
(Iε

0(xj + e1δh +wj)

−Iε
0(xj − e1δh+wj)) =: δxĨ0,j ,

where e1 is the first unit vector in R
2. Note that we make again use of the introduced interpo-

lation scheme (5.5) if Iε
0 is evaluated at non-grid points. Analogously we compute δyĨ0,j and

are finally ready to set up the discrete Newton step. With : denoting again a componentwise

matrix scalar product we define the discrete symmetrized gradient

D(Ĩ0) :=









D

(−−−−−−−→
δxĨ0 : δxĨ0

)

D

(−−−−−−−→
δxĨ0 : δyĨ0

)

D

(−−−−−−−→
δxĨ0 : δyĨ0

)

D

(−−−−−−−→
δyĨ0 : δyĨ0

)









∈ R
2N2×2N2

,

and use the discretized images in the force field (5.2) to define

~f :=





−−−−−−−−−−−→
(Ĩ0 − Ĩ1) : δxĨ0−−−−−−−−−−−→
(Ĩ0 − Ĩ1) : δyĨ0



 ∈ R
2N2

.

Then the Newton step (4.3) is discretized by

(5.6)
(

−E +D(Ĩ0)
)

δ ~w = −E ~w − ~f,

which is a linear equation system in the unknown δ ~w ∈ R
2N2

.

5.2. The Discrete Newton Iteration

Now we want to establish a discrete version of Newton’s method (4.1) for the functional Jε. We

use ~w1 := 0 ∈ R
2N2

as initial guess and employ the discrete Newton step (5.6) to obtain the

following iteration

(5.7)







(

−E +D(Ĩ0,k)
)

δ ~wk =−E ~wk − ~fk,

~wk+1 =~wk + τkδ ~wk,
k = 1, 2, . . .
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Note that the discrete gradient D(Ĩ0,k) and the discrete force ~fk depend on the current value of

~wk hence they have to be updated at each iteration.

We use a backtracking-like line search to determine the step size τk. We establish a discrete

approximation Jε
h of the cost functional Jε and determine τk as follows:

(5.8)











τk =min
τ∈T

Jε
h(~wk + τδ ~wk),

T :=

{

τ =
2ℓ

L
|ℓ = 1, . . . , L

}

,

where ~wk denotes the current iterate and δ ~wk the currently computed Newton direction. Note

that this line-search algorithm determines the optimal step-size on the interval [2/L, 2] hence

contrary to classic backtracking approaches [11] step sizes larger than one can be chosen. This

method has proven to provide good performance and less total computational cost than standard

Armijo–Goldstein or Wolfe–Powell techniques [25]. Since L > 0 is not chosen to be particularly

large, only a few evaluations of Jε
h are computed to obtain τk and the computation of Jε

h does

not involve the expensive calculation of the discrete gradient D(Ĩ0,k).
We use a relative stopping criterion in the Newton iteration (5.7). Note that the right hand

side of the Newton step (5.6) corresponds to the discretized Euler–Lagrange equations (3.4) of

the original minimization problem (2.7). Hence we want the residual rk := −E ~wk − ~fk to be

”small” and thus define the relative residual

rb :=
|rk|
|r1|

.

On the other hand the algorithm should terminate if the minimization comes to a standstill,

i.e., if the distance between two successive iterates is ”small”. Hence we define

re :=
|~wk − ~wk−1|

|~wk|
, and re := 0, if |~wk| = 0,

and combine these two notions in a stopping criterion. Let tol > 0 be a predefined tolerance.

We want the algorithm to terminate if either

(5.9) min (rb, re) < tol,

or k > kmax, where kmax denotes the maximal number of iterations.

As mentioned above the choice of ε in the definition of Iε
i (2.4) can have negative effects on

the quality of the diffuse approximations Iε
i of the original images Ii. Whereas it is usually

not too difficult to avoid too small values of ε it is very hard to give an upper bound for ε

beforehand. However, a value of ε too large leads to excessively blurred approximations Iε
i of

Ii and hence a loss of potentially important features of the original edges Γi. Hence we want

the solution strategy of the registration problem (2.7) to be robust against the choice of ε.

To account for the introduced approximation error we augment Newton’s method (5.7) with

an outer iteration in which we reduce blurring. We compute a rough solution ~w⋆ of (5.7) by

using a low number of maximal iterations kmax. To reduce blurring in the images we compute

the element-wise-square of Ĩε
i which accentuates the original edge sets Γi in contrast to their
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Algorithm 5.1 Iterative method to solve the elastic registration problem (2.7).

Choose ε > 0, kinc ∈ N : kinc ≥ 2 and ~w ∈ R
2N2

.

1. Given the edge-sets Γ0 and Γ1 embed them in the center of images I0 and I1.

2. Compute diffuse versions Iε
i of Ii.

3. for κ = 1 to K

a) Set kmax = kinc · κ
b) Compute ~w⋆ according to (5.7) using the line search strategy (5.8) until either the

stopping criterion (5.9) is satisfied or k > kmax.

c) Set Ĩε
i (xj) := Ĩε

i (xj)
2 and ~w1 = ~w⋆.

4. end

5. Set ~w = ~w⋆.

blurred surroundings. Then we restart Newton’s method with the images Ĩε
i (xj)

2, ~w1 = ~w⋆ and

increase kmax. We repeat this procedure K times such that the squared images are sufficiently

close approximations to the original images, i.e., Ĩε
i (xj)

2K ≈ Ii(xj). To fix ideas we summarize

this method in Algorithm 5.1.

The centering of the edges as stated in Algorithm 5.1 is an important pre-registration step:

if the edges are not centered within the images Ii the diffuse extensions of Γi created by (2.4)

may intersect image boundaries. This would greatly impair the computation of the deformation

~w at the boundary since mass having diffused over the boundary cannot be matched with its

natural counterpart in the other image. But even if the edges Γi did not ”diffuse” out of the

image, the centering prior to the approximation has beneficial effects on the performance of the

proposed solution strategy. Specifically since both edges Γ0 and Γ1 share roughly the same area

of the images I0 and I1, respectively, the deformation field does not have to account for large

translations within the image domain.

Altogether this approach has proven itself in practice. Since the minimization problem (2.7)

is only approximately solved for blurred versions Ĩε
i of Ii in the beginning, a rough initial

deformation field is obtained that captures only global deformations in I0. By successively

deblurring the images Ĩε
0 and Ĩε

1 the pathway of the original edge sets Γi takes shape again, and

the deformation ~w is updated to capture local features of the edges.

6. Computational Results

All computations were carried out in Matlab
TM 2009b running on a Dell Optiplex 745 equipped

with 8 GB of RAM. The operating system used was openSUSE 11.2 (64bit, kernel 2.6.31.12-0.2).

We want to apply the solution strategy developed in the previous section to register the San

Diego rabbit heart [34] (referred to as “TBunnyC” in the following) to an anatomically highly

realistic model [5] (called “Oxford-heart” from now on). Both models are shown in Figure 6.1.

The basic idea is to slice up the 3D models which gives rise to 2D edges. Then each slice is

registered consecutively by employing Algorithm 5.1. The registered slices are assembled again
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(a) (b)

Figure 6.1: The given 3D heart models: (a) The San Diego rabbit heart [34] ”TBunnyC” (29 394
points) and (b) the anatomically highly realistic model [5] ”Oxford Heart” (258 178
points)

to obtain a 3D representation of the results. Finally the deformation fields computed for each

slice are used to map a literature-based Purkinje fiber network [35] onto the endocardium of the

Oxford-heart.

Both models are given as ASCII-files containing the Cartesian coordinates of the grid points

constituting the surface meshes seen in Fig. 6.1. The measuring unit of the models is µm; hence,

we rescaled the large values in the models to reduce the size of the arising linear systems in the

registration. Further, to obtain a maximal spatial ”overlap” we translated the models. Since we

want to apply the proposed registration scheme for edge sets we ”cut” the 3D models to obtain

2D edges. To ensure a clear differentiation between left and right cavity we separated the heart

models accordingly. We chose the z-axis as cutting direction which seems to be a natural choice

once left and right cavities are considered separately.

Due to the fact that the grid points are not equally distributed on regular xy-planes in the

vertical direction we have to divide the models into layers of finite thickness, particularly with

a thickness of 250µm. The desired 2D edges arise from ”squeezing” the thickness until the slice

becomes an xy-plane.

Having generated a series of slices we are ready to apply Algorithm 5.1. Each slice is a sparse

double Matlab matrix of size N × N . We apply two preprocessing steps. For each slice we

first center the edges within the images and second we employ a ”region-growing” algorithm

to obtain blurred approximations Iε
i . We approximate the distance function dΓi

used in the

definition (2.4) of Iε
i by the following marching scheme. Each non-zero entry of Ii is multiplied

by N and added to its 3× 3 neighborhood. This procedure is repeated until either the edge set

”outgrows” the image or a maximal number of iterations has been exceeded. An exemplary result

of this region-growing is depicted in Figure 6.2(d). This way we generate two image series: the

blurred slices of the 3D model TBunnyC {Iε,m
0 }Mm=1 which serve as template image stack and
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(a) (b)

(c) (d)

Figure 6.2: Illustration of the dissection of the 3D heart models. Shown is the left cavity of the
TBunnyC model. First the model is cut in vertical direction (a). Only points in the
innermost layer of a slice are gathered (b) to generate a 2D edge set (c). We center
the image and apply our region-growing algorithm (d).

the blurred cuts of the Oxford-heart {Iε,m
1 }Mm=1 which form the reference stack. Thus we want

to find elastic deformations wm so that Iε,m
0 (x + wm) ≈ Iε,m

1 (x) for m = 1, . . . ,M . This is

achieved by employing a Matlab-implementation of the augmented Newton method depicted in

Algorithm 5.1. A list of all used parameters and their values is given in Table 6.1. The discrete

Newton step (5.6) is solved using the built-in Matlab-function mldivide (”backslash”). To

utilize memory efficiently the coefficient matrices in each Newton step are sparse double Matlab

matrices. Then we apply the computed deformations wm to the original images Im0 to register

the edges Γm
0 to Γm

1 . Figure 6.3 sketches the procedure for a single slice. Figure 6.4 shows the

3D reconstruction of the registered TBunnyC slices in comparison to the 3D reference, i.e., the

Oxford heart, for both left and right cavities.

Having registered each slice of the left and right cavities we want to utilize the computed
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Parameter Value Description

λ 1e-2 Navier–Lamé constant, see (2.6)

µ 1e-2 Navier–Lamé constant, see (2.6)

L 10 Linesearch parameter, see (5.8)

tol 1e-3 Tolerance for stopping criterion, see (5.9)

K 4 Number of outer iterations in Algorithm 5.1

kinc 5 Increment for kmax in Algorithm 5.1

Table 6.1: The used parameters.

deformation fields to map an artificial Purkinje fiber network given for the TBunnyC model

onto the Oxford heart. The Purkinje fiber network was given as a list of Cartesian coordinates

of 832 points (414 points for the left, 418 points for the right cavity respectively) representing

the spatial locations of the nodes of a 3D graph. Figure 6.5 shows the Purkinje fiber network in

the TBunnyC model in comparison to the registered network in the Oxford heart.

7. Discussion

The artificial PS considered here was modeled to be a subset of the TBunnyC model. Hence we

may safely assume that the computed deformations constitute a suitable mapping for projecting

the network nodes from the TBunnyC model onto the Oxford heart. The application required

the registered network to be a subset of the Oxford heart. This requirement together with the

sheer number of network nodes rendered it impossible to construct an affine linear mapping to

roughly project the nodes into a proximity of the Oxford endocardium and successively correcting

the spatial position of each individual point. Moreover, the complex geometry of the Oxford

heart which differs significantly from the topology of the TBunnyC model proved to be captured

adequately only by elastically deforming the TBunnyC endocardial walls. Hence the computed

elastic deformations guarantee that despite even large differences in the endocardial geometries

of both models, the artificial Purkinje fiber network is mapped sufficiently close to the Oxford

endocardium.

Our simulations confirmed that separating the cavities of the heart models is crucial. This

can be seen rather easily by looking at Fig. 6.1. We see that cutting the hearts in the vertical

direction gives rise to slices which contain edges from both the left and right cavities. This

fact seriously impairs the outcome of the registration. Depending on the choice of the Navier–

Lamé constants and the proximity of the cavities, the computed deformation fields ”pull” edges

corresponding to the left cavity to an edge arising from a cut through the right cavity and

vice versa. Despite numerous tests using different parameter values and cutting directions this

undesirable effect could not be completely eliminated. Thus we separated the 3D hearts into

left and right cavities.

It should be noted that the diameter of the slices used to dissect the 3D heart models has a

considerable impact on the performance of the registration. A large layer-diameter introduces

a modeling error which may not be negligible. On the other hand thinner diameters increase

the total number of slices necessary for a complete dissection of the models, which increases

the computational effort for the registration considerably. Therefore we employed the following

21



Template image I0 Reference image I1

(a) I
ε
0 (b) I

ε
1

(c) I
ε
0(x + w)2

K

(d) I
ε
1(x)

2
K

(e) I0(x + w) (f) I1(x)

Figure 6.3: The different stages of Algorithm 5.1 for the template image I0 (left column) and the
reference image I1(right column). The top row shows the centered and region grown

versions of the images. The middle row presents the resulting image Iε
0(x + w)2

K

after completion of Algorithm 5.1 versus the final reference Iε2K
1 . The bottom row

depicts the original image I0 after application of the computed transformation w

versus the original target I1.
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Figure 6.4: 3D Reconstruction of the registered TBunnyC slices (left column) vs the reference
Oxford heart (right column). The top row shows the left, the bottom row the right
cavity respectively.

scheme. We keep the diameter of 250µm and hence the total number of slices fixed, but to the

midway of the slice we assign all points within 125µm. By shrinking the threshold of 125µm

we come closer and closer to the selected planes. Including all points in the layer gives rise to

excessive displacement of grid points. Figure 6.2 shows this procedure for a single slice.

Despite the application presented here, our method proved to be a highly efficient and reli-

able technique to register 2D edges. In contrast to previously developed techniques involving

the Hausdorff-distance, our approach is computationally cheap and not limited to rigid trans-

formations. The approximation of edges by diffuse surfaces allows us to use a standard SSID

distance-measure which is simple to compute and can be easily extended by an elastic penal-

izer to account for nonlinear deformations. Due to the plain structure of the associated cost

functional, the derivation of necessary optimality conditions by means of variational calculus is

straightforward. The use of variational derivatives further enables us to employ fast and theo-

retically well-founded optimization routines such as Newton’s method. Furthermore, the driving

force of the registration can be quickly evaluated and is easy to interpret.
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(a)

(b)

Figure 6.5: The artificial Purkinje fiber network in the TBunnyC model (a) and the registered
network in the Oxford heart (b).
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A. Appendix

Below, we use the notation A : B =
∑

ij AijBij for matrices A = {Aij} and B = {Bij}, Also,

| · | = ‖ · ‖ℓ2 denotes the ℓ2 vector norm, and the same notation is used below for the ℓ2 matrix

norm. For the sake of simplicity we set here Ω := (0, 1)d ⊂ R
d and define Γ0,Γ1 ⊂ Ω to be

closed sets with finite Hausdorf measure Hd−1(Γi) < ∞, i = 1, 2. As a result, |Γi| = Hd(Γi) = 0

[4].

It will be shown that Jε is bounded but not coercive on H1(Ω). Instead, Jε is coercive on the

closed linear subspace

(A.1) H =

{

w ∈ H1(Ω) :

ˆ

Ω
w(x)dx = 0,

ˆ

Ω

[

w(x)xT − xw(x)T
]

dx = 0

}

,

which is the orthogonal complement in H1(Ω) of the subspace of infinitesimal rigid motions

RM =
{

w = c+Wx : c ∈ R
d,W ∈ S

d
}

,

where

S
d =

{

W ∈ R
d×d : W +WT = 0

}

.

This direct sum decomposition of H1(Ω) is established as follows.

Lemma 1. H1(Ω) = RM⊕H.

Proof. To show that RM ⊥ H holds in H1(Ω), let c+Wx = u ∈ RM and v ∈ H be arbitrary.

Then

ˆ

Ω
u(x)Tv(x)dx = cT

ˆ

Ω
v(x)dx+

ˆ

Ω
xTWTv(x)dx = WT :

ˆ

Ω
v(x)xTdx

= 1
2 (W

T −W ) :

ˆ

Ω
v(x)xTdx

= 1
2W :

ˆ

Ω

[

v(x)xT − xv(x)T
]

dx = 0.

Also,
ˆ

Ω
∇u(x) : ∇v(x)dx = W :

ˆ

Ω
∇v(x)dx

= 1
2(W −WT) :

ˆ

Ω
∇v(x)dx

= 1
2W :

ˆ

Ω

[

∇v(x)−∇v(x)T
]

dx = 0.

Thus, 〈u,v〉H1(Ω) = 0 holds.

Now let w ∈ H1(Ω) be arbitrary. It will be shown that there exists a unique u ∈ RM and a

unique v ∈ H such that w = u + v. The (d + 1) × d unknowns of c and W may be defined
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uniquely after it is shown that the following system is uniquely solvable:

(A.2)

ˆ

Ω
w(x)dx =

ˆ

Ω
[c+Wx]dx = c

ˆ

Ω
dx+W

ˆ

Ω
xdx,

ˆ

Ω

[

w(x)xT − xw(x)T
]

dx =

ˆ

Ω

[

(c+Wx)xT − x(c+Wx)T
]

dx

= c

[
ˆ

Ω
xTdx

]

−
[
ˆ

Ω
xdx

]

cT

+ W

[
ˆ

Ω
xxTdx

]

−
[
ˆ

Ω
xxTdx

]

WT,

0 = W +WT.

Given c and W , define u = c+Wx, which is clearly in RM. Then define v = w − u, which is

clearly in H because of the first two equations in (A.2). Should there exist ũ ∈ RM and ṽ ∈ H
such that w = ũ + ṽ holds, it follows from u − ũ = v − ṽ and 0 = 〈u − ũ,v − ṽ〉H1(Ω) =

〈v − ṽ,v − ṽ〉H1(Ω) that u− ũ = v − ṽ = 0. It remains to show that (A.2) can be solved.

The equation (A.3) for W below is obtained after multiplying the first equation in (A.2) by

−
´

Ω xTdx from the right, the transposed first equation by
´

Ω xdx from the left, finally the

second equation by |Ω| and then summing the results:

(A.3)

|Ω|
ˆ

Ω

[

w(x)xT − xw(x)T
]

dx−
ˆ

Ω
w(x)dx

ˆ

Ω
xTdx+

ˆ

Ω
xdx

ˆ

Ω
w(x)Tdx =

W

[

|Ω|
ˆ

Ω
xxTdx−

ˆ

Ω
xdx

ˆ

Ω
xTdx

]

−
[

|Ω|
ˆ

Ω
xxTdx−

ˆ

Ω
xdx

ˆ

Ω
xTdx

]

WT.

After replacing −WT with W , according to the last equation in (A.2), (A.3) can be rewritten

as the algebraic Riccati–equation B −BT = WA+AW in terms of the symmetric matrix A

A =

[

|Ω|
ˆ

Ω
xxTdx−

ˆ

Ω
xdx

ˆ

Ω
xTdx

]

,

and the skew symmetric matrix B

B = |Ω|
ˆ

Ω
w(x)xTdx+

ˆ

Ω
xdx

ˆ

Ω
w(x)Tdx.

For the solution of (A.3), the matrix A will be shown to be positive definite. For an arbitrary

b ∈ R
d, note that the following holds for the linear function f(x) = bTx:

(A.4) bTAb = |Ω|2
[

1

|Ω|

ˆ

Ω
f(x)2dx−

(

1

|Ω|

ˆ

Ω
f(x)dx

)2
]

≥ 0,
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where the inequality in (A.4) follows from

(A.5)

(
ˆ

Ω
f(x) · 1dx

)2

≤ ‖f‖2L2(Ω)‖1‖2L2(Ω) = |Ω|‖f‖2L2(Ω).

If equality were to hold in (A.4) and (A.5), this would require that f and 1 be linearly dependent.

However, such dependence is impossible when f is linear. Hence, the diagonalization A =

QΛQT follows for an orthonormal matrix Q and a diagonal matrix Λ = diag{λ1, . . . , λd}
containing the positive eigenvalues of A. Then by defining {Uij} = U = QTWQ, (A.3) can be

rewritten as UΛ+ΛU = C where {Cij} = C = QT(B−BT)Q. The solution U is determined

componentwise according to Uij = Cij/(λi + λj), which is skew symmetric since C is. Finally,

the solution to (A.3) is given by W = QUQT, which is skew symmetric since U is. Given W ,

c is determined directly by the first equation in (A.2).

Note that the whole of RM is in the kernel of the elastic penalty E in (2.6). Thus, Jε is not

coercive on H1(Ω):

c‖u‖2H1(Ω) 6≤ Jε(u) = Sε(u) ≤ 2|Ω|, ∀u ∈ RM.

The cost Jε is however bounded and coercive on H, and it will be shown below that Jε has a

minimizer in H1(Ω). For this existence, it will be useful to show that the energy norm

〈v1,v2〉E =

ˆ

Ω

[

λ
2 (∇ · v1(x))(∇ · v1(x))

+ µ
4 (∇v1(x) +∇v1(x)

T) : (∇v1(x) +∇v1(x)
T)
]

dx,

‖v‖2E = 〈v1,v2〉E,

is equivalent to the H1(Ω) norm on H.

Lemma 2. The H1(Ω) norm is equivalent to the energy norm on H.

Proof. We seek constants a1, a2 > 0 such that

(A.6) a1‖v‖E ≤ ‖v‖H1(Ω) ≤ a2‖v‖E , ∀v ∈ H.

The existence of the constant a1 follows readily. To show the existence of the constant a2,

assume for the sake of contradiction that there exists a sequence {vn} ⊂ H satisfying:

‖vn‖H1(Ω) = 1, while ‖vn‖E → 0.

Since H1(Ω) is compactly embedded in L2(Ω) [1], there is a subsequence {vnl
} which converges

in L2(Ω). From Korn’s Inequality [7],

‖∇w‖2L2(Ω) ≤ k1‖w‖2L2(Ω) + k2‖∇wT +∇w‖2L2(Ω)

≤ k1‖w‖2L2(Ω) + k2
4
µ‖w‖2E ,

∀w ∈ H1(Ω),
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it follows that

‖vnl
− vnk

‖H1(Ω) ≤ c1‖vnl
− vnk

‖L2(Ω) + c2‖vnl
− vnk

‖E .

Since both terms on the right side vanish, it follows that {vnl
} is a Cauchy sequence in H1(Ω)

with some limit v∗ ∈ H1(Ω) which satisfies:

(A.7) ‖v∗‖H1(Ω) = lim
nl→0

‖vnl
‖H1(Ω) = 1, ‖v∗‖E = lim

nl→0
‖vnl

‖E = 0.

Since H is a closed linear subspace of H1(Ω), it follows that v∗ ∈ H. From (A.7) and thus

‖∇v∗+∇v∗T‖L2(Ω) = 0, it follows that v∗ ∈ RM [7]. According to Lemma 1, v∗ ∈ H∩RM = {0}.
However, v∗ cannot vanish and satisfy (A.7) simultaneously. With this contradiction (A.6) is

obtained.

Lemma 3. Let ε > 0 be fixed. If Iε
0 is Lipschitz continuous on R

d, then Sε is continuous on

L2(Ω).

Proof. Define the Lipschitz constant L for Iε
0 :

|Iε
0(x)− Iε

0(y)| ≤ L|x− y|, ∀x,y ∈ R
d.

For w1,w2 ∈ L2(Ω),

(A.8)

|Sε(w1)− Sε(w2)| ≤
ˆ

Ω

∣

∣|Iε
0(x+w1(x))− Iε

1(x)|2−|Iε
0(x+w2(x))− Iε

1(x)|2
∣

∣ dx

≤
ˆ

Ω
|Iε

0(x+w1(x))− Iε
0(x+w2(x))|×

[Iε
0(x+w1(x)) + Iε

0(x+w2(x))− 2Iε
1(x)]dx

≤ 2

ˆ

Ω
L|w1(x)−w2(x)|dx ≤ 2L

√

|Ω|‖w1 −w2‖L2(Ω).

So |Sε(w1)− Sε(w2)| → 0 as ‖w1 −w2‖L2(Ω) → 0.

Lemma 4. Let ε > 0 be fixed. Assume that Iε
0 is Lipschitz continuous on R

d. Suppose further

that for a given w ∈ L2(Ω), there exists a c̃ ∈ R
d and a W̃ ∈ S

d such that

(A.9)

ˆ

Ω
|Iε

0(x+w(x) + c̃+ W̃x)− Iε
1(x))|2dx <

ˆ

Ω
|Iε

1(x)|2dx,

Then there exists a c∗ ∈ R
d and a W ∗ ∈ S

d such that

(A.10) Sε(w(x) + c∗ +W ∗x) = inf
c∈Rd,W∈Sd

Sε(w(x) + c+Wx),

Proof. Before it is proved that the infimum is achieved on a bounded set, certain estimates of

the function (c,W ) 7→ Sε(w(x)+ c+W ∗x) will be derived. First note that for arbitrary t > 0,
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c ∈ R
d and W ∈ S

d

(A.11)

Sε(w(x) + c+Wx)

=

ˆ

{x∈Ω:|w(x)|<t}
|Iε

0(x+w(x) + c+Wx)− Iε
1(x))|2dx

+

ˆ

{x∈Ω:|w(x)|≥t}
|Iε

0(x+w(x) + c+Wx)− Iε
1(x))|2dx

≥
ˆ

{x∈Ω:|w(x)|<t}
|Iε

0(x+w(x) + c+Wx)− Iε
1(x))|2dx− |{x ∈ Ω : |w(x)| ≥ t}|

≥
ˆ

{x∈Ω:|w(x)|<t}
|Iε

0(x+w(x) + c+Wx)− Iε
1(x))|2dx− 1

t2

ˆ

Ω
|w(x)|2dx,

where the estimate of the measure of the set {x ∈ Ω : |w(x)| ≥ t} follows according to the

Chebychev Inequality [3]. Now, for |c| ≥ 2 + |W | + t and x ∈ {x ∈ Ω : |w(x)| < t}, it follows

from
|x+w(x) + c+Wx| ≥ |c| − |x+w(x) + c+Wx|

≥ |c| − (|x|+ |w(x)|+ |W ||x|)
≥ |c| − (1 + |W |+ t) ≥ 1,

that x+w(x) + c+Wx 6∈ Ω = (0, 1)d and therefore Iε
0(x+w(x) + c+Wx) = 0. Hence, for

every t > 0,

|c| ≥ 2 + |W |+ t ⇒ Sε(w(x) + c+Wx) ≥
ˆ

{x∈Ω:|w(x)|<t}
|Iε

1(x)|2dx− 1

t2
‖w‖2L2(Ω).

Again, according to the Chebychev Inequality,

(A.12)

∣

∣

∣

∣

∣

ˆ

Ω
|Iε

1(x)|2dx−
ˆ

{x∈Ω:|w(x)|<t}
|Iε

1(x)|2dx
∣

∣

∣

∣

∣

=

ˆ

{x∈Ω:|w(x)|≥t}
|Iε

1(x)|2dx

≤ |{x ∈ Ω : |w(x)| ≥ t}| ≤ 1

t2

ˆ

Ω
|w(x)|2dx.

Combining the last two inequalities shows that for every t > 0,

(A.13) |c| ≥ 2 + |W |+ t ⇒ Sε(w(x) + c+Wx) ≥
ˆ

Ω
|Iε

1(x)|2dx− 2

t2
‖w‖2L2(Ω).

Now consider the case that |c| > 2+ |W |+ t may not hold for large |c|+ |W |. Since W ∈ S
d,

W is normal and therefore possesses an orthonormal set of eigenvectors {ni}di=1. Suppose the

eigenvalue magnitude M = |W | corresponds to n1 and n2 in the sense that the following hold:

Wn1 = −Mn2, Wn2 = Mn1.

Define P as the projection onto span{n1,n2} and define the seminorm p(x) = |Px|. Then for
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x ∈ {x ∈ Ω : |w(x)| < t} with p(c+Wx) > (2 + t), it follows from

|x+w(x) + c+Wx| ≥ |c +Wx| − |x+w(x)|
≥ [p(c +Wx)2 + · · · ] 12 − (|x|+ |w(x)|)
≥ p(c+Wx)− (1 + t) > 1,

that x+w(x) + c +Wx 6∈ Ω = (0, 1)d and therefore Iε
0(x+w(x) +Wx) = 0. So (A.11) can

be written as:

(A.14)

Sε(w(x) + c+Wx)

≥
ˆ

{x∈Ω:|w(x)|<t,p(c+Wx)≤(2+t)}
|Iε

0(x+w(x) +Wx)− Iε
1(x))|2dx

+

ˆ

{x∈Ω:|w(x)|<t,p(c+Wx)>(2+t)}
|Iε

1(x)|2dx− 1

t2
‖w‖2L2(Ω).

The above integration set, {x ∈ Ω : |w(x)| < t, p(c +Wx) ≤ (2 + t)}, is estimated as follows

using c =
∑d

i=1 χini and x =
∑d

i=1 ξini for arbitrary c,x ∈ R
d. First note that

Ω = (0, 1)d ⊂
{

x ∈ R
d : |x|2 ≤ d

}

=

{

d
∑

i=1

ξini :

d
∑

i=1

ξ2i ≤ d

}

⊂
{

d
∑

i=1

ξini : |ξi| ≤
√
d

}

.

Also note that:

{

x ∈ R
d : p(c+Wx) ≤ (2 + t)

}

=

{

d
∑

i=1

ξini : (χ1−Mξ2)
2 + (χ2+Mξ1)

2 ≤ (2 + t)2

}

.

Thus, the integration set, {x ∈ Ω : |w(x)| < t, p(c+Wx) ≤ (2+ t)}, is a subset of the cylinder:

{

d
∑

i=1

ξini : (χ1/M − ξ2)
2 + (χ2/M + ξ1)

2 ≤ [(2 + t)/M ]2; |ξi| ≤
√
d, i > 2

}

,

which has the measure π[(2 + t)/M ]2[2
√
d]d−2. So (A.14) can be written as:

(A.15)

Sε(w(x) + c+Wx) ≥
ˆ

{x∈Ω:|w(x)|<t,p(c+Wx)>(2+t)}
|Iε

1(x)|2dx− 1

t2
‖w‖2L2(Ω)

− |{x ∈ Ω : |w(x)| < t, p(c +Wx) ≤ (2 + t)}|

≥
ˆ

{x∈Ω:|w(x)|<t,p(c+Wx)>(2+t)}
|Iε

1(x)|2dx

− π[2
√
d]d−2

[

2 + t

M

]2

− 1

t2
‖w‖2L2(Ω).
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Again, according to the Chebychev Inequality,

(A.16)

∣

∣

∣

∣

∣

ˆ

{x∈Ω:|w(x)|<t}
|Iε

1(x)|2dx−
ˆ

{x∈Ω:|w(x)|<t,p(c+Wx)>(2+t)}
|Iε

1(x)|2dx
∣

∣

∣

∣

∣

≤
ˆ

{x∈Ω:|w(x)|<t,p(c+Wx)≤(2+t)}
|Iε

1(x)|2dx ≤ π[2
√
d]d−2

[

2 + t

M

]2

.

So combining (A.12), (A.15) and (A.16) gives:

(A.17) Sε(w(x) + c+Wx) ≥
ˆ

Ω
|Iε

1(x)|2dx− 2π[2
√
d]d−2

[

2 + t

M

]2

− 2

t2
‖w‖2L2(Ω).

Now let {(cn,W n)} be a minimizing sequence for Sε(w(x)+c+Wx). Suppose for the sake of

contradiction that {|cn|+ |W n|} is not bounded. If {|W n|} is bounded, then |cn| ≥ 2+ |W n|+t

holds for n large enough and for every fixed t > 0. So according to (A.13), the following holds

for every t > 0:

lim
n→∞

Sε(w(x) + cn +W nx) ≥
ˆ

Ω
|Iε

1(x)|2dx− 2

t2
‖w‖2L2(Ω),

and hence:

(A.18) inf
c∈Rd,W∈Sd

Sε(w(x) + c+Wx) = lim
n→∞

Sε(w(x) + cn +W nx) ≥
ˆ

Ω
|Iε

1(x)|2dx.

However, this inequality violates (A.9). The contradiction implies that {|cn|} may not be un-

bounded while {|W n|} is bounded. Now suppose that {Mn = |W n|} is unbounded. Then

whether {|cn|} is bounded or not, (A.17) implies for every t > 0 that:

lim
n→∞

Sε(w(x) + cn +W nx) ≥
ˆ

Ω
|Iε

1(x)|2dx− 2

t2
‖w‖2L2(Ω)

− lim
n→∞

2π[2
√
d]d−2

[

2 + t

Mn

]2

=

ˆ

Ω
|Iε

1(x)|2dx− 2

t2
‖w‖2L2(Ω),

and hence (A.18) is obtained again. The contradiction implies that {|cn|} and {|W n|} are

bounded. Thus, there are subsequences {cnl
} and {W nl

} which converge to some c∗ ∈ R
d and

W ∗ ∈ S
d respectively. According to Lemma 3, Sε is continuous on L2(Ω), and hence

Sε(w + c∗ +W ∗x) = lim
nl→∞

Sε(w + cnl
+W nl

x) = inf
c∈Rd,W∈Sd

Sε(w(x) + c+Wx),

and the desired result (A.10) is obtained.

Lemma 5. Let ε > 0 be fixed. Assume that Iε
0 is Lipschitz continuous on R

d. Then for every
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u ∈ RM there exists a v∗ ∈ H such that

(A.19) Jε(u+ v∗) = inf
v∈H

Jε(u+ v).

Proof. Let {vn} ⊂ H be a minimizing sequence. In particular, assume that

Jε(u+ v1) ≥ Jε(u+ v2) ≥ · · · Jε(u+ vn)
n→∞−→ inf

v∈H
Jε(u+ v).

Since the subspace RM is in the kernel of the penalty E, it follows that:

Jε(u+ vn) = Sε(u+ vn) +E(vn)

From E(vn) ≤ Jε(u + vn) ≤ Jε(u + v1), it follows with Lemma 2 that the sequence {vn}
is bounded in H1(Ω). Thus, there is a subsequence, again denoted by {vn} for convenience,

which converges weakly in H1(Ω) and strongly in L2(Ω) to some v∗ ∈ H1(Ω) [14]. By the

Hahn-Banach Theorem, v∗ belongs to the closure in H1(Ω) of span{vn}, and hence v∗ ∈ H.

According to Lemma 3, the similarity measure is continous on H1(Ω) ⊂ L2(Ω)

Sε(u+ v∗) = lim
n→∞

Sε(u+ vn),

and by the lower semicontinuity of the energy norm

(A.20) E(v∗) ≤ lim inf
n→∞

E(vn),

we get

Jε(u+ v∗) = Sε(u+ v∗) + E(v∗) ≤ lim inf
n→∞

Sε(u+ vn) + E(vn)

= lim
n→∞

Jε(u+ vn) = inf
v∈H

Jε(u+ v),

and the desired result (A.19) is obtained.

We compute a registration by solving the minimization problem

(A.21) inf
w∈H1(Ω)

Jε(w).

Since the images Iε
i vary with the value of ε, (A.21) forms a stand-alone minimization problem

for each ε. Thus we first prove that (A.21) admits a solution w ∈ H1(Ω) for a fixed ε > 0.

Theorem 3. Let ε > 0 be fixed, Iε
0 ∈ W 1,∞(Ω), Iε

1 ∈ L∞(Ω) and λ, µ > 0. Then there exists a

w⋆ ∈ H1(Ω) such that

(A.22) Jε(w⋆) = min
w∈H1(Ω)

Jε(w).

Proof. Assume that {w̃n} ⊂ H1(Ω) is a minimizing sequence. In particular, assume that

Jε(w̃1) ≥ Jε(w̃2) ≥ · · · Jε(w̃n)
n→∞−→ inf

w∈H1(Ω)
Jε(w).

For the case that {w̃n} is not bounded in H1(Ω), a related minimizing sequence will be de-
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rived which can be shown to be bounded. For this, Lemma 1 is used to define the orthogonal

decomposition:

w̃n = un + ṽn, un ∈ RM, ṽn ∈ H.

By Lemma 5, there exists for each n a vn ∈ H such that

Jε(un + vn) = inf
v∈H

Jε(un + v) ≤ Jε(w̃n).

Now define wn = un + vn and note that according to

Jε(wn) = Jε(un + vn) ≤ Jε(w̃n)
n→∞−→ inf

w∈H1(Ω)
Jε(w),

the sequence {wn} is minimizing. From

E(vn) ≤ Jε(wn) ≤ Jε(w̃n)
n→∞−→ inf

w∈H1(Ω)
Jε(w),

it follows with Lemma 2 that the sequence {vn} is bounded in H1(Ω). Thus, there is a subse-

quence, again denoted by {vn} for convenience, which converges weakly in H1(Ω) and strongly

in L2(Ω) to some v∗ ∈ H1(Ω) [14]. By the Hahn-Banach Theorem, v∗ belongs to the closure in

H1(Ω) of span{vn}, and hence v∗ ∈ H. Now suppose that:

(A.23)

ˆ

Ω
|Iε

0(x+ v∗(x) + u(x))− Iε
1(x))|2dx ≥

ˆ

Ω
|Iε

1(x)|2dx, ∀u ∈ RM.

Then using the lower semicontinuity of the energy norm, choose a subsequence {vnk
} ⊂ {vn}

satisfying:

(A.24) E(v∗) ≤ lim inf
n→∞

E(vn) = lim
k→∞

E(vnk
)

Also with (A.8) note that

lim
k→∞

|Sε(v∗ + unk
)− Sε(vnk

+ unk
)| ≤ 2L

√
Ω lim

k→∞
‖v∗ − vnk

‖L2(Ω) = 0.

Combining these results gives:

ˆ

Ω
|Iε

1(x)|2dx ≤
ˆ

Ω
|Iε

1(x)|2dx+ E(v∗)

≤ lim inf
k→∞

ˆ

Ω
|Iε

0(x+ v∗(x) + unk
(x))− Iε

1(x)|2dx+ E(v∗)

= lim inf
k→∞

{Jε(vnk
+ unk

) + [Sε(v∗ + unk
)− Sε(vnk

+ unk
)] + [E(v∗)− E(vnk

)]}

= lim
k→∞

Jε(wnk
) + lim

k→∞
[Sε(v∗ + unk

)− Sε(vnk
+ unk

)] + [E(v∗)− lim
k→∞

E(vnk
)]

= inf
w∈H1(Ω)

Jε(w) + [E(v∗)− lim
k→∞

E(vnk
)] ≤ inf

w∈H1(Ω)
Jε(w)

33



Thus, if (A.23) holds, one can as well take a minimizer to be w∗ = c for c large enough that

(Ω + c) ∩ Ω = ∅. Hence it may be assumed that

ˆ

Ω
|Iε

0(x+ v∗(x) + u(x))− Iε
1(x))|2dx <

ˆ

Ω
|Iε

1(x)|2dx, ∀u ∈ RM,

and due to the fact that Iε
0 as W 1,∞(Ω)-function is Lipschitz continuous [17] we may apply

Lemma 4. There exists a u∗ ∈ RM such that

(A.25) Sε(u∗ + v∗) = min
u∈RM

Sε(u+ v∗).

Now define w∗ = u∗+v∗, which will be shown to minimize Jε. Using (A.25) and the subseqence

{nk} of (A.24),

Sε(u∗ + v∗) ≤ lim inf
k→∞

Sε(unk
+ v∗)

= lim inf
k→∞

{Sε(unk
+ v∗)− Sε(unk

+ vnk
) + Sε(unk

+ vnk
)}

≤ 2L
√
Ω lim

k→∞
‖v∗ − vnk

‖L2(Ω) + lim inf
k→∞

Sε(unk
+ vnk

)

= lim inf
k→∞

Sε(vnk
+ unk

)

where (A.8) has been used. Thus,

Jε(w∗) = Sε(v⋆ + u⋆) + E(v∗) ≤ lim inf
k→∞

Sε(vnk
+ unk

) + lim
k→∞

E(vnk
)

= lim inf
k→∞

Sε(vnk
+ unk

) + E(vnk
)

= lim inf
k→∞

Jε(wnk
)

≤ lim inf
k→∞

Jε(w̃nk
) = inf

w∈H1(Ω)
Jε(w),

and the desired result (A.22) is obtained.

Now that we have guaranteed existence of a solution to (A.21) for a fixed ε > 0 we are able

to investigate the behavior of solutions of (A.21) for various values of ε as ε → 0. Now we show

the convergence of the blurred images Iε
i to Ii as ε → 0.

Lemma 6. As ε → 0, Iε
0 and Iε

1 converge pointwise to I0 and I1, respectively.

Proof. Let x ∈ Ω be arbitrary. If dΓ0
(x) = 0 holds, then since Γ0 is closed, x ∈ Γ0 and I0(x) = 1

hold. Also, ∀ε > 0, 0 = dΓ0
(x) ≤ ε implies that Iε

0(x) = 1− dΓ0
(x) = 1 = I0(x). On the other

hand, if dΓ0
(x) > 0 holds, then x 6∈ Γ0 and I0(x) = 0 hold. Also, according to (2.4), choosing

ε < dΓ0
(x) gives Iε

0(x) = 0 = I0(x). Thus, limε→0 Iε
0(x) = I0(x). In the same way, Iε

1 converge

pointwise to I1.

Finally, we have the following convergence of minimizers as ε → 0.

Theorem 4. Assume the conditions of Theorem 3. For every ε > 0, let wε ∈ H1(Ω) denote the

minimizer of Jε(w). Let uε and vε denote the projections of wε onto RM and H, respectively.

Then

(A.26) lim
ε→0

vε = 0.
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Also, there exists a u0 ∈ RM such that

(A.27) lim
ε→0

Sε(u0 + vε) = lim
ε→0

Sε(uε + vε) = 0.

Proof. For every ε > 0, it must be that

(A.28)

ˆ

Ω
|Iε

1(x)|2dx ≥ Jε(wε) = Sε(uε + vε) + E(vε).

Otherwise, wε could as well be chosen to be a constant c large enough that (Ω+ c)∩Ω = ∅. By

Lemma 6, Iε
1 converges a.e. to zero. Since |Iε

1 | ≤ 1, it follows with the Dominated Convergence

Theorem [17] that

(A.29) lim
ε→0

ˆ

Ω
|Iε

1(x)|2dx = 0.

Hence, by (A.28), E(vε) → 0, ε → 0. It follows with Lemma 2 that

(A.30) lim
ε→0

‖vε‖H1(Ω) = 0

and (A.26) is established. Similarly, it follows from (A.28) that

(A.31) lim
ε→0

Sε(uε + vε) = 0.

It remains to construct u0 and to prove (A.27). For this, choose some ε0 > 0 and let c =

u0(x) ∈ RM be chosen large enough that

(A.32) |c| > 2 + ‖vε‖1/2L2(Ω)
, ∀ε ∈ (0, ε0)

Now, for every t > 0,

(A.33)

Sε(u0 + vε) =

ˆ

{x∈Ω:|vε(x)|<t}
|Iε

0(x+ u0(x) + vε(x))− Iε
1(x)|2dx

+

ˆ

{x∈Ω:|vε(x)|≥t}
|Iε

0(x+ u0(x) + vε(x))− Iε
1(x)|2dx

≤
ˆ

{x∈Ω:|vε(x)|<t}
|Iε

0(x+ u0(x) + vε(x))− Iε
1(x)|2dx+ |{x ∈ Ω : |vε(x)| ≥ t}|

≤
ˆ

{x∈Ω:|vε(x)|<t}
|Iε

0(x+ u0(x) + vε(x))− Iε
1(x)|2dx+

1

t2

ˆ

Ω
|vε(x)|2dx

where the last estimate follows from the Chebychev Inequality [3]. For ε ∈ (0, ε0) and for

t = ‖vε‖1/2L2(Ω)
it follows with (A.32) that |c| > 2 + t. Then in the integration set, {x ∈ Ω :

|vε(x)| < t}, it follows from

(A.34) |x+ u0 + vε(x)| = |x+ c+ vε(x)| ≥ |c| − (|x|+ |vε(x)|) ≥ |c| − (1 + t) > 1
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that x+ u0 + vε(x) 6∈ Ω and therefore Iε
0(x+ u0 + vε(x)) = 0. Thus, (A.33) can be simplified

as follows:

(A.35) Sε(u0 + vε) ≤
ˆ

{x∈Ω:|vε(x)|<t}
|Iε

1(x)|2dx+
1

t2

ˆ

Ω
|vε(x)|2dx

The first integral on the right in (A.35) can be estimated further acccording to the Chebychev

Inequality,

(A.36)

∣

∣

∣

∣

∣

ˆ

{x∈Ω:|v(x)|<t}
|Iε

1(x)|2dx−
ˆ

Ω
|Iε

1(x)|2dx
∣

∣

∣

∣

∣

+

ˆ

Ω
|Iε

1(x)|2dx

=

ˆ

{x∈Ω:|v(x)|≥t}
|Iε

1(x)|2dx+

ˆ

Ω
|Iε

1(x)|2dx

≤ |{x ∈ Ω : |vε(x)| ≥ t}|+
ˆ

Ω
|Iε

1(x)|2dx ≤
ˆ

Ω
|Iε

1(x)|2dx+
1

t2

ˆ

Ω
|vε(x)|2dx.

Combining (A.35) and (A.36) gives:

Sε(u0 + vε) ≤
ˆ

Ω
|Iε

1(x)|2dx+
2

t2

ˆ

Ω
|vε(x)|2dx

Setting t = ‖vε‖1/2L2(Ω)
gives finally:

(A.37) Sε(u0 + vε) ≤
ˆ

Ω
|Iε

1(x)|2dx+ 2‖vε‖L2(Ω).

Using (A.30) and (A.29) in (A.37) shows that Sε(u0 + vε) → 0 as ε → 0. Combining this result

with (A.31) gives (A.27).
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